Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of the Vlasov equation.
نویسندگان
چکیده
On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is formulated so that the instantaneous time evolution of the averaged one-body distribution is essentially equivalent to the solution of Vlasov equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body correlation and can naturally describe the fluctuation among many channels of the reaction. It is demonstrated that the newly introduced process of AMD-V has drastic effects in heavy ion collisions of 40Ca+ 40Ca at 35 MeV/nucleon, especially on the fragmentation mechanism, and AMD-V reproduces the fragmentation data very well. Discussions are given on the interrelation among the frameworks of AMD, AMD-V and other microscopic models developed for the nuclear dynamics. Typeset using REVTEX
منابع مشابه
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is ...
متن کاملStatistical properties of antisymmetrized molecular dynamics for non-nucleon-emission and nucleon-emission processes.
Statistical properties of the antisymmetrized molecular dynamics (AMD) are classical in the case of nucleon-emission processes, while they are quantum mechanical for the processes without nucleon emission. In order to understand this situation, we first clarify that there coexist mutually opposite two statistics in the AMD framework: One is the classical statistics of the motion of wave packet ...
متن کاملAntisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei
Antisymmetrized molecular dynamics (AMD) with quantum branching processes is reformulated so that it can be applicable to the collisions of heavy nuclei such as 197Au + 197Au multifragmentation reactions. The quantum branching process due to the wave packet diffusion effect is treated as a random term in a Langevin-type equation of motion, whose numerical treatment is much easier than the metho...
متن کاملSimulation of RDX Decomposition Interacting with Shock Wave via Molecular Dynamics
Cylotrimethylenetrinitramine (RDX), with the chemical formula C3H6N6O6,is an energetic organic molecule used widely in military and industrial commodities ofexplosives. By stimulating RDX through exerting temperature or mechanical conditionssuch as impact or friction, decomposition reaction occurs at a very high rate. Moleculardynamics techniques and LAMMPS code with Rea...
متن کاملCharge gradient effects on modulated dust lattice wave packets in dusty plasma crystals
Nonlinear Dust lattice modes are studied in a hexagonal two-dimensional dusty plasma lattice, in presence of charge gradient of dust particles. In this lattice, such gradients affect nonlinear behavior of dust lattice waves. The amplitude modulation of off-plane transverse dust lattice wave packets is investigated considering the anisotropy of interactions, caused by the height-dependent char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. C, Nuclear physics
دوره 53 6 شماره
صفحات -
تاریخ انتشار 1996